Sciences de l'Ingénieur

TP n°4 - Action mécanique d'un Fluide Direction Assistée

1. MISE EN SITUATION

Lors de travaux pratiques précédents, il a été mis en évidence la totale indépendance entre l'effort résistant et le couple au volant.

Cette propriété est intéressante car le comportement de la roue n'a pas d'influence sur la stabilité de la direction (éclatement d'un pneu, choc sur un obstacle,...).

Néanmoins, il est important, pour le confort du conducteur, de recréer les sensations habituelles au volant.

En particulier, la dureté du volant doit être fonction de son angle de rotation.

Dans le bloc de commande, le mécanisme came - poussoir permet de réaliser cette fonction.

2. STRUCTURE DE LA DIRECTION

Le système comporte :

Lycée Henri Poincaré

- Un volant de direction.
- Un boîtier Diravi, comportant un arbre d'entrée, deux trains d'engrenage, un tiroir de distributeur, un pignon de sortie et un système pignon – came.
- Une crémaillère
- Une pompe hydraulique
- Un vérin hydraulique

3. Etude expérimentale :Mesure du couple de rappel

<u>Objectif</u> : Réaliser et analyser les mesures du couple de rappel sur le volant en fonction de sa rotation et de la vitesse du véhicule.

Mesures

Réaliser une mesure à partir d'une rotation régulière du volant pendant le temps d'acquisition et pour une vitesse du véhicule de 100 Km/h soit une vitesse de rotation de 1680 t/mn du régulateur.

Afficher le couple de rappel au volant en fonction de l'angle de rotation de celui-ci. Recommencer pour des vitesses de 0, 50et 170 Km /h

Analyse des résultats

 Examiner les résultats des mesures précédents.
 Commenter cette courbe et comparer là à la courbe du constructeur fournie en annexe.
 Conclure.

4. Etude théorique : Mécanisme Came - Poussoir

Objectif :

- Analyser le fonctionnement et modéliser le mécanisme Came-Poussoir .

- Isoler la came et le poussoir et faire le bilan des actions mécaniques exercées sur ces pièces.

-Retrouver la valeur théorique du couple au volant en fonction de la vitesse et de l'angle d'orientation du volant.

Fonctionnement :

Analyser le mécanisme du système du durcissement et , en complètant les figures partielles ci dessous , expliquer comment est recrée artificiellement l'évolution de la dureté au volant en fonction de sa rotation.

Figure 2

Lycée Henri Poincaré

Modélisation

Modéliser le système came - poussoir (partie représentée sur les figures ci-dessus) en vue d'une étude statique et tracer le schéma cinématique associé dans une position des pièces voisine de celle de la figure 2.

Etude statique

- Isoler le poussoir et faire le bilan des actions mécaniques exercées sur cette pièce.
 Représenter l'allure de ces actions sur le poussoir.
 La pression exercée sur le piston (image de la vitesse du véhicule) étant connue, préciser la nature : connue ou inconnue de chacune des actions exercée sur <u>le Poussoir</u>.
- Isoler la came, faire le bilan des actions mécaniques. Après application du PFS, en déduire la relation entre la pression du régulateur et le couple transmis par la came.
- A partir du couple transmis par la came en déduire le couple au volant en fonction de la pression du régulateur. Quel(s) paramètre(s) géométrique(s) de la came intervient(ennent).

Etude géométrique de la came

A partir des informations constructeurs et de l'étude statique, définissez une méthode pour retrouver le profil de la came.

Lycée Henri Poincaré	Page 4 sur 6
•	· · ·

						<u> </u>
Angle volant	Couple volant	Couple volant	Couple volant	Couple volant	Vitesse véhicule.	Pression
(degré)t	(Nm)	(Nm)	(Nm)	(Nm)		Constructeur
	0 km/h	50 km/h	100 km/h	170 km/h	(km/h)	(+- 5 bars)
0,000					0,000	25,000
					10,000	28,000
78,667	1,261	3,127	5,044	5,800	20,000	33,000
118,000	1,497	3,712	5,987	6,885	30,000	41,000
157,333	1,694	4,201	6,777	7,793	40,000	50,000
196,667	1,867	4,630	7,467	8,587	50,000	62,000
236,000	2,022	5,015	8,089	9,302	60,000	72,000
275,333	2,164	5,368	8,658	9,957	70,000	80,000
314,667	2,297	5,696	9,186	10,564	80,000	88,000
354,000	2,420	6,003	9,682	11,134	90,000	94,500
393,333	2,537	6,293	10,149	11,672	100,000	100,000
432,667	2,648	6,567	10,592	12,181	110,000	104,000
472,000	2,754	6,831	11,018	12,671	120,000	107,000
511,333	2,856	7,083	11,425	13,138	130,000	110,000
550,667	2,954	7,326	11,816	13,588	140,000	112,000
590,000	3,048	7,559	12,192	14,021	150,000	113,000
629,333	3,139	7,785	12,557	14,441	160,000	114,000
668,667	3,228	8,004	12,910	14,847	170,000	115,000
708,000	3,313	8,217	13,253	15,241		

Pression du régulateur en fonction de la vitesse du véhicule

- /		<u> </u>	_ /	<u> </u>	<u> </u>	• • •
Données	constructeur	Calcul	Donnée	Calcul	Calcul	Calcul
			constructeur			
Angle	Dérivée	Vitesse du	Pression	Couple came	Angle volant	Couple
came		piston : V				volant
(degré)	(micron/degré)	(m/s)	(+ - 5 Bars)	(Nm)	(degré)	100 km/h
0,000					0,000	
10,000					39,333	
20,000	70,540	0,0004232	100,000	19,839	78,667	5,044
30,000	83,726	0,0005024	100,000	23,548	118,000	5,987
40,000	94,771	0,0005686	100,000	26,654	157,333	6,777
50,000	104,430	0,0006266	100,000	29,371	196,667	7,467
60,000	113,120	0,0006787	100,000	31,815	236,000	8,089
70,000	121,082	0,0007265	100,000	34,054	275,333	8,658
80,000	128,473	0,0007708	100,000	36,133	314,667	9,186
90,000	135,401	0,0008124	100,000	38,082	354,000	9,682
100,000	141,942	0,0008517	100,000	39,921	393,333	10,149
110,000	148,132	0,0008888	100,000	41,662	432,667	10,592
120,000	154,087	0,0009245	100,000	43,337	472,000	11,018
130,000	159,774	0,0009586	100,000	44,936	511,333	11,425
140,000	165,242	0,0009915	100,000	46,474	550,667	11,816
150,000	170,514	0,0010231	100,000	47,957	590,000	12,192
160,000	175,612	0,0010537	100,000	49,391	629,333	12,557
170,000	180,552	0,0010833	100,000	50,780	668,667	12,910
180,000	185,347	0,0011121	100,000	52,129	708,000	13,253

Données sur le profil de la came

Réalisation d'une mesure

Allumer la maquette. Lancer le programme Diravi. Cliquer sur l'icône Mesure. Le menu suivant apparaît :

Mesures 🗙					
Mesure Network Initial.	Port série COM 1 COM 2 COM 3 COM 4 (occupé) 02 Point n°: 0				
Etalonnage des capteurs Angle de rotation du volant	♀ Defaut				
Pente Valeur à l'origine 0.317450 0.000000	✓ Mot de passe Fermer				

Cliquer sur l'icône *Initial* et tourner le volant jusqu'à ce que la phrase « *calcul en cours* » apparaisse sur le tableau de bord.

Attendre la fin de l'affichage et cliquer sur l'icône *Enregist* pour sauvegarder les mesures.

Un clique sur l'icône 1 mesure fait apparaître un nouveau menu ou l'on peut choisir les courbes à afficher.